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1. INTRODUCTION

ror the convenience of analysis, mooring line tension Lnder the excitation

of wind, wave and current may be divided into a steady state component and a

dynamic component. The steady state mooring line tension is defined as the

force induced by the mooring line geometry, gravity, average current and aver-

age wind, and the dynamic tension by wave and wind gusts. The steady state

analysis has been treated extensively and the solution can be achieved in a

relatively small amount of computer time. The dynamic analysis has not been

developed to the point where a low cost computer program with good accuracy

is available. The works of Paquette and Henderson2) Wilson and Gabaccio,)

Reid,(4) Kaplan and Ralf, Nath,(6) and Brainard are typical of the

studies of the dynamic response of single point moorings made in recent years.

E:xtensive reviews of the literature on the response of various cable

nystems under hydrodynamic loading are presented by Casarella and Parsons. (1)

A time domain analysis is most desirable for the solution of mooring line

tension under random waves. The solution technique may be divided into two

types: the digital computer approach through tie use of the method of charac-

teristics and the analog computer approach. The latter has been discussed in

Kaplan and Raff. The basic formulation of the field equations based on the

method of characteristics was presented by Reid(4) and Nath, (8) and a digital
(6)

computer program was developed by Nath.

By supplying a simulated random wave as the excitation to the buoy

system, the random stress history at any point of the mooring line can be

obtained. Based on the simulated wave and the stress history, the autocovari-

ance function, the cross covariance function, stress peak distribution curve,

and the average frequency can be derived. However, each of the steps, i.e.

wave simulation, solution program and statistical analysis, involves extensive
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computer time. The high cost and special knowledge required by this method may

make it too expensive for normal design use.

In the light of the difficulties encountered in a complete time domain

analysis, it is necessary to search for an analytical solution in the frequency

domain in order that the dynamic response of a buoy system under random input

can be performed in a small amount of computer time. Additionally, little

knowledge of time-series analysis is needed. However, the frequency domain

analysis is only applicable to a linear structural system,and consequently the

non -linear system has to be linearized.

The behavior of the mooring system is heavily dependent on the hydro-

dynamic drags on the surface buoy and the mooring rope. As will be shown later,

the tangential mooring line hydrodynamic drag is a major damping factor in the

response of a deep sea mooring line subject to oscillatory longitudinal motion

at one end. However, neither theoretical solutions nor experimental data are

available for the estimation of the tangential drag coefficient of a rope under

oscillating motion.

A review of the drag coefficients on the mooring rope and the surface

buoy is presented in Appendix A.

-2
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2. STEADY STATE MOORING LINE TENSION

In two dimensional analysis, the steady state tension in the mooring line

is defined as the force induced by geometry, gravity, and the coplanar average

current and wind. This is considered the best approximation of the mean stress

in the mooring line subject to a definite combination of wind, wave and current,

and the coplanar assumption gives a conservative solution.

Consider the two dimensional free body of an elemental length of the

mooring line as shown in Fig. 1.

X ..

xA

Wu5

II
Figure 1. Free Body of a Mooring Line Element

The equilibrium equations in normal and tangential directions, after neglecting

the second order terms, are A

(FDN + W sin4e)AS = T A4 (1)

and (F - W cosW)•S = AT (2)
DT

where W is the weight of the rope in water per unit length,

F and F are as in Equation (A.2) and (A.3).
DN DT

Treating the mooring line as a series of finite chords, the solution of

(1) and (2) can be approximated by incremental numerical integration. The

computer program is presented in Appendix C.

The program can handle the compound mooring line, made of wire rope and

-3-
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synthetic line, with instrument packages. The program capacity and rate of

convergence will be discussed in Appendix C.
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3. DYNAMIC MOORING LINE TENSION

3.1 Model Simplifications

For reasons state% in the Introd'±ction,the dynamic mooring line tension

.- ,blem is solved using the frequency domain approach. Since the frequency

domain analysis is only applicable to a linear structural system, the buoy

system has to be simplified. A

The basic assumptions of the buoy model considered in this work are as

follows:

(1) The buoy is a surface follower buoy so that the buoy response spec-

trum can be considered to be the same as the wave spectrum.

(2) The mooring line is taut and can be treated as a straight string.

The dynamic force in the mooring line due to the horizontal movement of the

surface buoy under the action of wave and fluctuating wind is negligible com-

pared to that due to the vert" ii motion of the huoy.

(3) The tangential hydrodynamic drag on the mooring line, which is pro-

portional to velocity squared, can be linearized through a principle of

equivalent linearization.

(4) The internal damping of the mooring ropes is linear and the dynamic

stress strain relation under sinusoidal motion is given by

a = (E + iE2 )e(1

Depending on the material behavior under dynamic loading, the linear damping

material may be represented by several types of mathematical models. One of

the models listed in Table 1 may be used to describe the behavior of mooring

lines and the models are incorporated into the solution program DYNSIN and

DYNRAN as described in the Appendices.

(5) Stress due to strumming is neglected.

o !i



The validity of the first assumption depends on the type of buoy under

consideration. This is discussed in Appendix B. The computer program developed

for the dynamic analysis of the mooring line is based on the assumption that

the buoy is a surface follower type, e.g. discus buoy. For buoys other than

the surface follower type, a transfer function between the wave spectrum and

the buoy response spectrum has to be established before a valiO result may

be expected. However, the assumption will provide an upper bound solution to

the dynamic tension of the mooring line provided the natural frequency of

- the heave motion of the buoy is far from the effective wave frequency. In the

case of a stationary buoy, e.g. spur buoy, the dynamic tension may be con-

sidered as negligible. The second, fourth and fifth assumptions introduce

negligible error, as discussed in Appendix B. The error due to the lineariza-

tion of the hydrodynamic drag will depend on the degree of non-linearity. The

distortion of the result may be negligible at a low sea state and significant

at a high sea state.

No error bound is available, and the accuracy can only be checked by

experimental data as discussed in Appendix B.

3.2 Dynamic Mooring Line Tension Under Sine Wave

A deep sea mooring line witb instrument packages inserted in it is ideal-

ized as Fig. 2.

The equilibrium condition of the free body, after neglecting the second

order terms, leads to:

A ox 1 C Uu•- -u2u 0 (3)

atat at.
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CdON]1..GC

Ji A
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_.•÷:• Xn'Up .' Rope mass +6o-tra;, ted Water

SFig. 2- Idealized Mooring Line and Free Body Diagram of the Rope Element

Introducing the relation a= (E1 + iE 2 )e = (E1 + iE 2 ) •

into Equation (3) and dividing by AEI, then

* 92u + [2 a2u CDT i~ ~uI au Or 32u -0()
•2 E1  •]2 2AE1  at9t E1 at2

Equation (f) may be linearized tO

U T- u C - 2- 0 (5)

•xK• 2  DR B't a2 at 2

where
E Ea

B2 •, a2=-O n DR isthe equivalent linear damping parameter as

derived in (B.27).
Separating variables in the formh

4 -IX

U(x,t) = X(x)-euit (6)
where X(x) is complex, then the spatial part of Equation (5) becomes

-8-
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(1 + iT)X, x + _ _ iWCR)X 0 (7)

a2 D

ThTin ids the solution

X(x) = (R1 + it) sin (a+ io)x + (R2 + U2 ) cos (+ io)x (8)

where Rl, I,, R 2 , 12 are real constants to be determined from boundary and con-

tinuity condItions, and

• 2 2

a~ DRC DR +

2(1 +T2)

2 2 2 2 2 12
a- DCDe] +{[(a)- TCDRw] + [CDRW + r(-) (10)

2(1 +T2 )

The values of a, Tand CDR will depend on the material model and the mater-

ial constants. They are ccnstants for the two parameter models and frequency

dependent functions for the three parameter rodels.

The relaticn between L,, E a"nd the material constants for various models

are shown in Table 1.

The displacement is now I:t
U(x,t) [CR1 + iiI) sin (a + iB)x + (RC2 + i 2) ccs (a-:i8)xeI (1)

The strain is

au(xt) [(R1-i-I )(a+iB)cos•a+ie)x- (R2+iI 2 )(C+ia)sin(a+i8)x3eWt (12)

and the stress is

auS=(E 1 + iE2 ) ( (13)

Considering only the real parts and rearranging grives the displacement

U(x,t) = Acos w + A2 sin Wt UA(x) cos (wt + (14)

9



where

A,- R SCx + I.CSx +i c +I x

A 2 (RC'Sx + 1I SCx -R 2SSx + I ~CCX)

U A =(A 2 + 
V)

the x= sin uxsinh~ ox w :()O(t)(5

SCx=sin xcosh f~x

(-x Rcs 1sin)S~x- (siIc

CCX= Cos$i a? )cshx a -R 2xc+ 1 )

ndthe mooringln esn

o= C ccs wt +- B, snw Cs(' (15);x 1A2

where

B A[=R2(aE2c)xCCx+E(R2S+x-EaCC~x +(RIaI )cx +I+R

B2=( + 11(-E1 Cx + E-ciS+x- EB)%OSx -(l + S~cx)+R-l

a + R2 -Wt +SCx -inw o1 C~ Co SWx + (16)

+ R2(-E 1BSCx + E1 xCSx + E ci SCx + E2 Cx)

-10-



MM V,-M-M- - .0

C2 = -A[RI(E1B CCx.- El a SSx Et CCx + E20 SSx)

+1 (E aICCx + E1 SSx E a Cx + E2 aSSx)

+R2 (-EflSCx + El 8CSx + r2a SCx -t E2 aCSx)

+1 2(E 1 SCx + E IcCSx + E 2 CSx - E2 OCSx)

The free body diagram of a package is illustrated in Fig. 3. The equilibrium

equation of -he package is
2u + M 2u

KAK X K XK=0 K+l XK+l XK+=L K+I+ DPK at --L+ 2 = (17) a

rig. 3. Free Body of the kth Package

where
= 4nwCDKAKUA (1"CDpk : 3 as derived in (B.23)

CDk is the dimensionless drag coefficient of the k package.

PM is the mass of the kth package plus the virtual mass. The boundaryk0

and continuity conditions are:

(1) UI(List) = x0 cosw t

(2) PMl6P + "C U A(a + A(
1 + DpI P1 1 xlxl=0 2 A x2)x2=0 0

(3) U( (Ot) U ) = U2 (L2 ,t)

(4) PM2UP2 +DP2 UP2 -2 (Cx2 )x2=0 + A3(ax?)x3=O 0

(2n-1) U n_(0,t) = U t = U (L nt)
(-2 (18)

(2n) Un(O,t) 0 O

S... • - • •_- .• •_• --,-,'•-,• e-•.• •, •_• • . ..



Fr:m U (0,t) 0 R =1 =0
n 2n 2n

By sig P(k Uk (0,t) and substituting (14), (15) into (18), the equation

can be presented in the matrix form shown on page 13, where

K

K 1 =cos inaKLKcsih 
-'L

K21 = OQKLK sih0K L

KK 11  sin aYL K sAin h a KL K

K 2CosaLK cosh VKL

12 ElyPK )+AAKl (E c

K

j(+1

P 5 zA (E) (ax K + I + ( '''- 2'l
15 + 1 1K+1 I(+l22 K+3.111 ~ KI1 "+1 2

K KK+rl K+I- K 1-1 K+1
16 *K+1 1 K-f-i K-i- 11 I 81 1 22 )+K+i(E2)K+l( ~K+I 2  B~- 1K 11 )

PK A EK+l ,Kl+A(E (a *1+1 K~
P1 7 =Al 1) K+ (K+21~ -",+1 JK+I2 K+1I K+1I!2 t K+l.12

K A ) c K+li- KK+l)+ (E c K+l_ 8  j((+l)
-8 K+i (Ei- IY+16(+121 lK+1ý12 )AK-1-( 2 K-I- K+11I2 K+1 21

PK -(AK EK Be1 AK E KaK

21 K A 1EK KxX (E 2K Ki

PK
'23 CDFK'

P K -PM W2
24 K

K K+1 '(.I+1~l

PK = E ( K+io+8KK+1 ) A (E' )KaK+I- O +1)

P2 6  AK+l(I K+l X~K.Ii2 t"K-i- 11~ K-I- 2 K-I1' K+1 11 ~K+i142

K =K+ K+1  A' ' KK1((11P2 7 =A K (E )K~ (-a K1-1 -8K~l2 'K-I- 2)K-i-iK K-21 K-l11%2

i8 K--.l .1 K+1 K+1 21 K-1-12i, ~ K+K-cxl.1

-12-
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By solving (19), values of R,, I,, R2, I2' ... R2n-l, I2n_l can be obtained

and the displacement, strain and stress can be computed from (14), (15),

and (16).

A computer program to obtain the equivalent linear damping coefficient

and solve Equation (19), written in Fortran IV and coded in CDC 6400, is pre-

sented in Appendix D.

3.3 Dynamic Mooring Line Tension Under Random Waves

The random vibration solution to a linear system has been well developed.

The random response of a non-linear system is usually treated by either lin-

earizing the non-linear system or generating a response history by means of

a simulated random loading.

The linearization technique for random vibration is much more difficult

than that for the cyclic vibration, and the accuracy can only be verified by

e.:periment. However, for reasons stated previously, a linearized system will

be employed in this work.

3.3.1 System Linearization for Random Analysis

Equation (4) may be rewritten in the form

E2  a2U au Pr a2U
S+ i-) C u + E =0 (20)

Sax at E t2
1 1axt

where
C 1TDp

aE Du _W au auE =CR .•t AE 1 at t

U is a random variable, and E is an error vector.

The linearization of Equation (20) may be accomplished by determining the

value of CR which would minimize t s1 squarp of the error vector E and then

deleting E from the equation, thus

E2 } CDT* "-D-p w. .

[C u JulCul U) 0
aR 2AE 1

-14-



and
CDT w • {i U) (21)

R 2AE 1 U2 (

where [-} represents the expectation.

Assuming U(t) is a Gaussian process with zero mean, ensures that U is also

a Gaussian process with zero mean with density function
62

1 20.2 •

p.(U)= C (22)
U ,/2ir a6

Substituting Equation (22) into (21) and performing the integration, gives

CDTDOpw ,/8 0- 3 (23)
CR - 2AE I Tr (U(23

Equation (21) may also be obtained by equating the average power dissipation

in both systems.

This discussion is so far limited to a definite point in the rope to find

a value of CR for the whole rope; an averaging process must be carried out by

integrating over the whole length:
a L0R DT w IL{U.UdX

R 2AEI JLf {U2 )dx

' rD p -3dX
DT w r_ IU (24)

2AE L 1nd

1. IoOAv

Repeating this procedure allows the equivalent linear damping coefficient

for the instrument package in (M') to be represented by

CDp = w r ' (25)
2 -1 U
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3.3.2 Solution Technique

The spectral approach is a convenient tool for obtaining the statistics of

the response process of a linear system under random loading. The spectral

approach enmploys the equation,

S ( ) IH(W)i2. S (W) (26)

y ()x

S (w) is the power spectrum of the response process.
y

S x() is the power spectrum of the input loading process.

if (w) is the frequency response function.

The computer programs to obtain the equivalent linear damping coefficient

and the spectra of the r,;sponse quantities, displacement, strain and stress

along the mooring line are presented in Appendix E.

The assumption that the sea state is a stationary, Gaussian process with

zero mean ensures that the response processes are also stationary and Gaussian

with zero mean. The variances of the response processes y 'dt and arewith2

ay2 = J'Sy(.) d.

y y

and the average frequency of the response process, fe' is(10)

f _ (27)
e 2n C;

y

The distribution of the peak values, yp, has been shown to be

-16-
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2I
r 2  2n (l-e2 )2 x2

pn(n) = 1 e 2c +(i-e 2) ne J e dX (28)

where

r) y P/

a 20 Z o0-4
.2 = _ZY Y _'Y

ay 2092

yp is the peak value of y

E ic a bandwidth indicator. The density curve pn (n) is shown in Fig. 4 for

:;everal values of c.

,o:

o.4 
-

- I

-z0 1
0 3I0•

Fig. 4 Graphs of pn(n), the probability distribution of the heights of

maxima (n= Yp/oy) for different values of the width c of the energy

spectrum. (11)

-17-
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p (n) isaRy eg-cr ew e":

p is a Rayleigh curve when = 0, whereas it is a Gaussian curve when 6= 1.
it is seen that the Rayleigh curve provides an upper bound distribution of the
peak values. However, we are not interested in all peak valuesbut the maxi-
mum peak in two adjacent zero crossings. The distribution of the maximum peak
values is shown to approximate the Rayleigh distribution as follows.

A zero-mean, Gaussian, stationary random signal is shown in Fig. 5.

Since we are interested in only the maximum value between two adjacent
zero crossings (peak A), the peak B and peak C have to be excluded from
Equation (28). The distribution after

A A

Figure 5. A zero-mean, Gaussian, stationary random signal.

excluding peak C is:

p (W)I>o 
(29)i- Pn (n)dn

Considering:

(1) The random process is symmetrical about zero mean, the probability
of occurrence of peak C is the same as that of C'.

(2) A peak C' accompanies a peak B.

(3) nB >CnC

The distribution of peak A may be approximated by excluding peak C and

-18-
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j.1

peak C', instead of peak B, and conservative distribution thus obtained.

p:in) [ 1(n)-pn(-n)]; n >0 (30)

1-2 pn(ndn
Substituting (28) int~o (30):

r1^2 r iX22) X2

P(n) n d e dX + e d
V2-; (1-2 n (nI)dn) .'(11)

(1-c)' ne -2-- d+2

Then

dX + ) =ve eX(31 --

(1-2 ,P ,p (n~d n)o

f 22

Eqato (31-)2rprsnt te- nomlzd itiuto-uveatreldn

since jsPA(n)dn =i and ne dn =6
• i-2)=1-21 P (n)dn

This coincides with the solution derived by Catright and Longuet-HigginsI

afrom a different approach.

Then _1
pn)=ne 2 (31)

Equation (31) represents the normalized distribution curve after excluding

the shaded area in Fig. 6.

From the above, it is seer. that the distribution of the maximum peak values

approximates the Rayleigh dilstribution and is on the safe side for all values

of c. Therefore, the Rayleigh distribution will be used to represent the peak

stress distribution for all values of £ in the safety analysis.



0 +

Figure 6. Density Curve of the Maximum ?eak ValuesI

-20-
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CHAPTER It. DESIGN CONSID ERATIONS

The re:;ultu of the previous work ,ugfgent the following critical design

features.

4.1 Damping Parameters

The damping sources of a taut mooring line consist of the internal damping,

the tangential drag on the rope surface, and the drag on the instrument pac age.

The relative significance of the damping sources are shown in Figs.7 and 8.

Tho tangential drag on the rope surface is clearly a major. damping source. The

frequency response function is heavily dependent on the magnitude of the ian-

gential drag coefficient as shown in Fig. 9. Evidently, a reliable estimate of

the tangential drag coefficient is essential for an accurate assessment of the

dynamic force in the mooring line. Such reliable data is not presently avail-

able.

The selection of a mooring rope should reflect the realization that differ-

ent values of tangential drag coefficients will result in different dynamic

behavior. The use of a rope with a very smooth surface may introduce a high

resonant peak.

4.2 Dynamic Force Attenuation Along the Mooring Line.

The changes of the variance of the dynamic force along the mooring line

are shown in Fig. 10, and the changes in the frequency response functions are

displayed in Figs. 11, 12, and 13. It is evident that the higher the damping,

the greater the attenuation of the dynamic force along the mooring line. For

moderate or high damping, the maximum dynamic force is <:t the buoy; for low

damping, the maximum force can be at depth.

-21-
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'1.3 Anchor Lifting

The mooring line force at the anchor results from three sources: configur-

ation, wind ,nd current drag, and wave excitation. The chance of anchor lifting

can be minimized by adjusting the nylon scope. and the rope combination (if a

compound line is used) so that the dynamic force at the anchor is a minimum.

2 Another alternative is to insert special dampers on the mooring line to cause

attenuation of the dynamic motion for some distance from the anchor. The

damper should be designed so that the drag coefficient is large in the axial

direction and small in the lateral direction.

-7

:• - 27--



CHAPTERl 5. SUMMARY AND CONCLUSIONS

Computer programs for the steady state mooring line tension due to geom-

etry, gravity, average current and average wind, and for the dynamic mooring

line tension under the action of si:.e wave or random waves are presented in

this report. The dynamic program is a frequency domain solution based on a

linearized structural system and is only applicable to a taut line mooring.

Specific points in this report are now summarized.

Analytical Features

The non-linearity of a mooring line originates from three sources:

hydrodynamic drag, line curvatures, and material properties. Solutions obtained

in the time domain by using a simulated wave to generate the output history

from either an analog or a digital computer are most satisfactory for mooring

line dynamics. The high cost and special knowledge required in this method may

not make it readily available for general design use. Alternatively, the

dynamic response of a buoy system under random input can be obtained with a

small amount of computer time from solutions in the frequency domain based

on a linearized structural system. This method is developed here. The linear-

ized structural system has the following features:

(1) The line curvature non-linearity is neglected by treating the

mooring line as a straight string.

(2) The mooring rope is assumed to be made of step-wise linear, viscous

material, and the loss modulus is taken to be always constant.

(3) The hydrodynamic drag is linearized through the principle of

equivalent linearization.

For a taut mooring line, the first and the second assumptions introduce neg-

ligible error; the third may bias the solution significantly in a high sea

state. No error bound i, available, and the solution can only be verified

from experimental data.
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Forcing Conditions

The buoy is assumed to follow the sea surface, and the sea state is

afssumed to be a stationary, ergodic, Gaussian process with zero mean. Either

a fully developed sea or an average sea spectrum is used as the loading spectrum

in the analysis input.

Based on the linearized structural system, the dynamic force can be con-

sidered as a stationary Gaussian random process with zero mean, and the van-

ance of the process is then derived. The total mooring line force is obtained

from the superposition of the steady state force due to current and wind and

the dynamic force due to waves; the total force is represented by a density

curve. The distribution of the peak transient force is shown to approximate

the Rayleigh distribution.

Damping

The damping force on a mooring line comes from three sources: internal

damping, water drag on the rope surface, and water drag on the instrument

package. For a typical mooring without sub-surface buoy or special dampers

inserted on the line,the water drag on the rope surface has been shown to be

predominant. The dynamic behavior of the mooring line is heavily dependent on

the value of the tangential drag coefficient. Neither theoretical solutions

nor experimental data are available for the estimation of the tangential drag

coefficient of a rope under oscillating motion. This must be remedied if a

better assessment of the dynamic behavior of a mooring line is to be obtained.

-29-
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APPENDIX A.

HYDRODYNAMIC DRAG ON ROPE AND BUOY

A.1 Hydrodynamic Drag on the Mooring Rope

A.l.1 Steady State Flow

The drag force per unit length, FDN, exerted by a fluid of mass density p,

flowing with uniform velocity V in a normally transverse direction to an

immersed circular cylinder of diameter D, can be expressed as

1 V2

FDN 2 CDN

The dimensionless parameter CDN is largely independent of Reynold's

Number, R, in the range 100 < R 5 5 x 105 as shown in Fig. A.l. A mooring

line has 2 x 103< R < 2 x 105(13) for which CDN= 1.2 for a long, smooth cylinder.

Surface roughness and strumming may raise this figure to 1.8. In mooring line

(2)design, a value between 1.2 and 1.8 is used; for this work, ) is taken asforthi wok, DNisaens

1.5. In the case where the fluid approaches the mooring line with an inci-

dence angle, the normal component of the drag force may be calculated by(121

F 2 1 CDPD V 2 sin (A.2)

DN 2 DN n DN2 V2 S2

FDT 1 TDVT2 =0 CDTPD cos 24 (A.3)DT 2 DT VT 2DT

whereý is the angle between flow direction and the mooring line.

Little data is available concerning the longitudinal drag on the mooring

line. Based on the towing tests on finite length stranded cables, Podes(l2)

suggested the tentative relation,

C 0.02 CDT DN

It was made clcar that "The coefficient of the tangential force has not

been measured accurately, but the results with respect to the tangential
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coefficient agree at least in a qualitative way with the result of other

experiments.'(1 2 ) This point is further emphasized when it is noted that

incidental flows, instead of parallel,were used in most of the cases where the

tangential drag coefficient was measured.

The lower curves of Fig.A.l show the theoretical results of Reid's

analysis(13) for CDN together with some experimental data from towing tests on

stranded cables. The roughness parameter X is defined as ratio of the equiva-

lent sand-grain diameteýr of the surface roughness to the radius of the cylinder.

A.1.2 Tangential Drag Coefficient Under Sinuso1dal Motion

The tangential hydrodynamic drag, which is considered to be negligible

for the steady state mooring line analysis, may be a major factor in the

response of a deep sea mooring line subject to oscillatory longitudinal motion

at an end. This response is critical in the design of the structural system and

therefore the tangential drag must be studied carefully.

The laminar boundary flow around a smooth circular cylinder under longi-

tudinal sinusoidal motion may be obtained from the Navier-Stokes' eq (14)

L2 V 1 LVp_ 0 P V d

and the time dependent boundary conditions

V = V cosw t at r = d/2 for t > 0
0

and V = 0 at t = 0 (A.5)

(A.4) and (A.5) correspond to the heat conduction equation in a circular

dylinder with sinusoidal boundary conditions. The solution of the above equa-

tions are(15)

V -=A cos•. wt B sin wt+ C
0

where A, B and C are functionals of Bessel functions. The detailed representationr

-32-
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(15)

of A, B and C can be found in Cw-.slaw and Jaeger. The tangential drag

force per unit length then may be evaluated from

F D = -ndr = iidpv ( 3 -
DT ~r:d/2

= -;dpvV W cosw t + •- sin wt + : -r=d/2 rd2(A.6)

where v is the dynamic viscous coefficient. Rather than complete this numerical

evaluation, an order of magnitude is obtained by determining the drag force on

an infinite plate under sinusoidal motion. The solution of the laminar boundary

(14)
flow of an infinite plate under sinusoidal motion is

V(x.t) V e cos(Wt - X) (A.7)

where x is the distance perpendicular to the plate

V is the velocity amplitude.o

Then

( =V W (sin wt -cosw t)
o 0v

iV 4-sin (wt- (A8
0 Vo 4 A8

Subt iutingp .95b"sac2/ft•" ft2/a
ubstituting v= 0.9 x 10-6 /secfor water at

200 C., the tangential drag force due to skin friction is

F'T -dpv V /I 7 sin (Wt 3,
DT v V

3.30 x 10 3 ow d V /w sin(wt - -7r) (A.9)

o 4

From (A.6) and (A.9) it may be concluded that for smooth cylinder at

laminar flow condition, the tangential drag cc,:fficient is of the order of

lO 3 and is not proportional to V2 but v'1 with a phase difference.

Surface roughness results in form drag rather than skin friction, and

the drag may be considered as proportional to the square of the velocity. For

the drag of an oscillatory tangential flow on a rough surface, no theory and
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experimental data are available.

It is suggested that the theoretical solution by Reid for the case of

steady flow be used as a guide to assess the drag coefficient. Values for the

roughness parameter A are taken as 1.0, 0.2 and 0.01; the associated tan-

gential drag coefficients, from Fig. A.1, are 0.013, 0.008 and 0.0035 for

plaited rope, braided rope, and Nolaro respectively. These values are thought

to reflect the relative roughness of these ropes.

A.2 Wind and Current Drag on the Surface Buoy

A.2.1 Physical Description of the Large Discuss Buoy

The large discus buoy which was developed by General Dynamics will be used

for this st!,dy on the merits of its surface following property. The buoy(8)

is 40 feet in diamecer and 7 feet thick with a flat deck and truncated cone

shaped underside. The weight of the buoy, including the ballast, is about

2 x 105 pounds and the moment of inertia about the horizontal axis through the

center of gravity is 7.5 x10 5 slug-ft 2 .

The dimensions of the buoy are shown in Figs. A.2 and A.3.

4.2.2 Buoy Wind Drag

Based on the results of wind tunnel tests on a scale model, Nath (16, 6)

suggested the wind drag force on a 40 foot diameter discus buoy as

W 2
F 140 p a 2 70 p W 2 (lbs) (A.10)w air 2 air a

Introducing pair = 0.00228 slug/ft 3 .

Then F = 0.16 W a2 (lbs) (A.l1)

where W is the ambient wind velocity in ft/sec.a

The wind velocity increases with height above the sea. For a conservative

picture the speed at the mast top (elevation 44?) will be used in this analysis.
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Note: The buoy was
divided into 12 pieces
for the initial work

a) Plan

b) Perspective of one segment

Figure A.3 Detail of the buoy hull
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Us';ing the wind profile suggested by Davenport( 17 )

W Z 1/
W1 1Z a (A.12)
2 2

where a= 8.5 and 30' . Z .< 800' for winds over the water, I
thn4W 1/8.5

then (W)Z= 4 4 , . (W)z= 6 4, = 0.957(11)z=64,

It is to be mentioned that for very stormy conditions the air contains

spray, which will increase the mass densit•y and decrease the wind speed. The

spray can be considered to be the result of energy transfer from wind to the

ocean surface, and the total momentum flux of the wind layer near the sea

level may be reduced due to the energy dissipation in the spray generation.

Therefcre, the use of a uniform wind velocity based on the magnitude at the top I
of the structure may result in a safe design for the wind force, including the

effect of the spray. However, little is known about the true effect of the

spray.

A.2.3 Buoy Hydrodynamic Drag

Hydrodynamic characteristics of various buoy hulls can be found in

(18) (quette and Henderson(2) and Mercier.(19) The horizontal current

(E)"frag on the large discus buoy was suggested by Nath -to Lbe
S~v 2

F 0.035 x T..(40)2 C.~ p2

c 2S22 P 44V 2 (ibs)

where VC is the surface current velocity in ft/sec.

-7£I
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APPENDIX B.

DISCUSSION OF THE MODEL SIMPLIFICATIONS

B. i Surface Following Property

Under wave excitation, the forces acting on a free floating buoy are

buoyancy, initial force: and hydrodynamic damping. If the increment of buoy-

ant force is much bigger than the increment of initial force under wate~r undula-

tion, the buoy will follow the water surface closely, and the surface follower

buoy is named as a result of this phenomon. The huge discus buoy is a typical

example of this type. On the other extreme, if the increment of buoyant force

is much smaller than the increment of initial force, then the buoy will Qot be

disturbed significantly by the wave and will thus remain stationary. The spar

buoy is a typ.;cal example of the stationary tyrpe. Other types of buoys fall

The wave spectrum measured from a free floating wave meter (FFWM) when

compared to that from a slack moored large discus buoy by Gaul and Brown,(20)

indicates that the discus buoy behaves much as the F.W. at frequencies up to

- Hz.4

CoMrprison of these spectra is shown in Fig. B.1. The increment of moor-

ing i.ne tension may restrain the buoy motior and hence disto.,t the response

spectrum. However, the increment of mooring line tensiun is usually small

compared to the increment of buoyant force for the discus buoy.

Fig. B.1 supports the assumption that the buoy response spe-trum can be

considered the same as the wave spectrum for design purposes.

It is suggested that wave spectrum be truncated at a frequency of 0.35

for the large discus buoy. For smaller surface foll.ower buoys, the effective

frequency range may be extended.

The computer progam developed for the dynamic analysis of the mooring
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Figure B.1 Comparative Wave Spectra from FFWM and Monster, Buoy.

line is based on the assumpti.on that the buoy is a perfect surface follower..

For buoys other than this type, a transfer function between the wave spectrw-q

ar- the buoy response spectrum has to be established before a good result may

be expected. However, the assumption will provide an upper bound solution to

the dynamic stress of the mooring line provided the natural frequency of the

heave motion of the buoy is far from the effective wave. frequency. In the

case of a stationary buoy, the dynamic force may be considered to be negligible.
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B.2 Straight String and Horizontal Buoy Motion

The mooring line does not remain straight under the action of ocean current.

The sag will depend on the magnitude of mooring line tension and the current

velocity. The effect of lateral loads on the dynamic force of a vibrating

stretched string is investigated here.

Consider a stretched string with normal lateral loading q(x) as shown in

Fig. B.2.

usL1) + Uo 5:' Mt

ASA

A~ 
(6f I -TX - $

Figure B.2 Vibrating Stretched String Under Lateral Loading.

From equilibrium, consideration in the x and y directions,

Ao cosS-A(+ -2 AS~co- 2k AS)+ mASU +q(x)AS sin4 = 0 (B.1)
andAx x as as

Aa sin-•A(a + ax AS)sin(ý+ at AS)- mASV -q(x)AS cos# 0 (B.2)

Foi, a prestretched string, the longitudinal displacement U can be divided

into a static component, U (X) = csx and a dynamic component, UD(x,t),

U(x,t) = U(x) + UD(X,'Z)

where e is the prestretched strain.
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For a deep sea, taut mooring line:

X >> U () >> UL D

(31)

17:8 is of the order of 0.1.

-and- are usually of the same orde., and much smaller than e. exceptax x
at resonance frequencies. However, a resonance condition is not likely to be

developed due to the internal and external dampings. Based on these, the

following approximations are made:

sin 0

cos i

aU 1 V 2  9UI + • axt' c is the axial strain of the string.
After neglecting the second order terms, Equation (B.1) and (B.2) may be

reinitten as:

,UD 1 2UD = q(x) av (B.3)
ax2  a2  at 2  AE Dx

8 UD 3V al 2 1;V qx

. - - _ _ = - -(B.4)
aX2 3X ax 3x2  a2 at 2  AE

where a2 = E/p ; p is the mass density.

Equations (B.3) and (B.4) appear analytically intractable. In order to see
the effect of the term g(x) L on the solution of U , an approximate solution

A. ax D

is presented.

The equations of longitudinal and transverse --mall amplitude vibrations of

a stretched string without lateral loading as deduced from Equations (B.3) and

(B.4) are
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a2UD 1 3 2 UD
- 0 (B.=)

3x2  a2  3t 2

a2V 1 a2V - o (B.6)
4ax

2  b2 Dt2

where b 2 = m is the effective mass per unit length,
m

T is h• pretension in the string.

The solution of Equation (B.5) with L, indary conditions:

U D 0 at x = 0

U = U0 sin wt at x = X
u

is U + U-0  sin £ x sinw t (B.7)
D w. asin a

The solution of Equation (B.6) with boundary conditions:

V 0 atx= 0

V V sin w t at x = Z0

is
V
V s c sin±xsin wt (B.8)

s in-,

Using (B.7) azd (B.8), then

2UD 3V b a2V DUD
- .-- - (B.9)

ax2  Bx a Bx2  ax

where b T
a 4~

Introducing (B.9), Equation (B.4) can be reduced to

a2V 1 _2V _ q(x) (B.lO)

ax2  ( h+b/a)b2 at2  AE

which has a solution

-42-



rr0Q(x)x+Dl+ D (B.11)

Ssin Bt
V(x,t) = sin 12 x 2i ,t,

where b
B2  - (1 + b2 , and the constants D1 and D can be determined from

V = 0 at x = 0, t = 0

V = 0 at x= t, t = 0

Using Equation (B.11) in (B.3) gives

D 1 D =q() - o sin wt - D (B.12)

3x2  a2  3t2  A sin wI B

For a special case where q(x) =qo constant

D, qo

= + 2AE
D D2= 0

and Equation (B.12) reduces to

aU 1 a2U q qox q 0
S _ cos sin t (B.13)

aX2  a2  at2  • sin B s lE - -- 1

which has a solution

Uf= (C sin x + C2 cos L x)(C3 sinX t + C4 cosX t)

q V q0
2  qox 2

2 cos !x-- sin t q x3 + (B.14)

( - 2 si 
6A2 E2  4A E_• _ !!) AE s in -- B

a2  B2

The last two terms in (B.l'ý) involve only spatial variables. They may add to

the static component and be neglectea in the dynamic analysis. With this in

mind and letting

- o Vo B 
(B.15)

uý2 2 W£
(2 )AE sin -B

B2 a2
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Then

UD(x,t) = (C sin x + C cos Ž±ax)(C sin Xt + C cos At)
1 a 2 a 3 4

+ Q cos Lx sin wt (B.16)
B

Introducing the boundary conditions,

( I) U D = 0a t t = 0 ".
(1) UD 0 a t

(2) 0 at x 0

(3) U =U sin wt at x=
D D

Allow Equation (4.30) to be expressed by

F U
UD(x,t)0si x Q o-!U(t)= -- - -- - Q cos•- x£sn•x'

sin a i-Q(cos cos-4--) a

+ Q cos sinw t (B.17)

Comparison between Equations(B.7) and (B.17) indicates that the effect of

lateral loading on the dynamic force of the string is negligible if Q<< 1. On

the examination of (B.16), it is seen that Q is usually less than unity by

several orders except when sin 0. This is the condition where the trans-

verse resonance occurs, and the solution based on small amplitude vibration

does not apply.

In the case of a deep sea mooring line, the interaction between water and

rope will damp the transverse motion and the effect of the lateral loading may

be considered to be small for all conditions.

B.3 Damping Linearization

Based on the principle of equivalent linearization,(21) the solution of a

non-linear equation

M x + K X + ijf(Xx) = 0 (B.18)

may be approximated by the solution of an equivalent linear equation
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M + (K + K X + -x 0 (B.19)

The equivalent parameters K and x are obtained by equating the work per

cycle for the two systems. The magnitude of the er.,'or depends on the linear-

ized quantities (•)L and (•) and is of the order of magnitude of U2.(21) In

general, if pf(X,X) is small compared to M X and K X, the error will be small.

The parameter X is obtained by equating the active components of energy in both

systems, K1 by equating the reactive components. Assumi:,g

X = a cos (wt + •) (B.20)

A and K1 have been shown( 2 1 ) to be
2Tr

= -u--- Jf(a cos j,- a wsin o) sino do (B.21)

KI= -- f(a cos o,- a wsin o) coso do (B.22)Tra
0

where W2- k

H

The equivalent linearized damping coefficients of the hydrodyn,':mic drag

on the instrument package and the mooring line are derived as follow.,.

(A) Instrument Package

The hydrodynamic drag on the instrument package is

FDP = yCDN Ap WIl ki =IXl k = XX

where CDN is the dimensionless normal &-ag constant

A is the projected area of the package on the plane perpendic'xlar

to the motion.

From (B.21) and (B.22)

X = 3 pw C A a w (B.23.Tr = DN

K, = 0 (B.24)
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The magnitude of error will depend on the weight, volume, and geometry of

the package. It will be smaller with a slender current meter compared to a

glass ball. When the water drag on the packages are not the major system

damping force, the linearization technique may be applied to all packages

without excessive solution distortion. However, the arguments only provide a

guide for subsequent employment of engineering judgment and the accuracy may

only be checked by comparison with experimental results.

(B) Mooring Line

The hydrodynamic drag on the mooring line surface per unit length is

given by FDR =1 A p l X = IXI XA X where

CDT is the tangential drag coefficient

A = -D is the surface area per unit length.

From (B.21) and (B.22)
X = WcDT (B.2,,

3

K1  0 (B.26)

Normally A= (x).

However to ensure an analytical solution to the linearized equation, A has to

be assumed constant for the whole section of the mooring line. This equivalent

coefficient is obtained from the balance of energy dissipated in the whole

section of the mooring line in one cycle; this results in the equation

L T L CDTC

fJf(Xi) X* dt dX = Jjf( 2. p~ YrD Jij i) dt d
0 0 00SIL

giving a3 (X)dXgiving 4pWCDTDw

DT _(B.27)

3 LSa2 (X)dx
fo
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The tangential drag is usually very small compared to the inital force

and the elastic restoring force; because of this, the method-of equivalent lin-

earization usually achieves good results.

B.4 Internal Linear Damping of the Mooring Line

The areas of the hysteresis loops under cyclic axial tension of the nylon

ropes have shown that the internal damping in not linear. When the internal

damping is a major damping source, then the non-linear damping may be linear-

ized by using a stress dependent loss modulus. The problem may then be solved

by an iteration process. Usually the effect of the internal damping is rel-

atively small compared to the hydrodynamic damping; therefore, only a rough

estimate of the loss modulus is used in the solution program.

B.5 Strumming

Little is known about mooring line strumming and its effect. The purpo-.

of the assumption of neglecting the effect of strumming is to simplify the

problem so that it can be handled analytically. However, the effect of the

small amplitude transverse motion has been shown to be negligible in the mooring

line dynamics, and it may be expected that the strumming will stay in the small

amplitude region because of the damping forces and the irregular profile of

the ocean current.
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APPENDIX C.- Program STEADY

C.l Pupose

To solve the steady state mooring line tension under the action of wind

avd current.

"C.2 Program Logic

The Program starts with the estimation of the inclination angle of the top

segment. Knowing this and the horizontal drag coefficients in the buoy and the

mooring line, the force of the top segment can be calculated and the position

of the end of the segment is determined given the stress-strain relationship

of the mooring line. According to (1) and (2), the force increment AT and the

angle increment A0, then the end position of the second segment can be

determined. In the same manner, the forces and end pcsitions of the successive

segments are determined. If the vertical position of the anchor thus obtained

does not fall close to the water depth within a pre-set tolerable limit, then

the inclination angle of the first segment is revised and the calculation is

repeated. The iteration process repeats until a satisfactory solution is

achieved.

C.3 Notation

(A) Input

NLK Number of cases A

K Number of line sections

CDB Current drag coefficient on the buoy; the drag force

= CDB" V ; Vc is current velocity.

CDW Wind drag coefficient on the buoy; the drag force

CDW" V 2; V is wind velocity
w w

CDT Tangential hydrodynamic drag coefficient on the rope; the

drag force = Pw- @CDT'T D'V"CT per unit length.
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CDN .Normal hydrodynamic drag coefficient on the rope; the
A

drag force Pw CDN. D .VCN2 per unit length.

VCO Surface velocity of the ocean current with zero wind

velocity, in knots.

LP Length of the package, in feet.

WP Weight of the package, in pounds.

CDNP Normal hydrodynamic drag coefficient on the package; the

drag force = CDNP VN,2; b.-sec2/ft.2

CDTP Tangential hydrodynamic drag coefficient on the package;

the diag force = CDTP V CT2; lb.-sec2/ft. 2

SA Length in feet of the small increment of the rope considered

to be straight. It must be a common factor to all line

sections.

DEPTH Water depth in feet

ERR Tolerable error. The allowable difference between the water

depth and the anchor depth is ERR X DEPTH.

HS Significant wave height in feet.

UFA Average ultimate strength of the synthetic ropes in pounds.

L Length of the rope in feet

DIA Diameter of rope in inches

UF Ultimate strength of the rope in pounds.

UWT Weight of the rope in water in plf.

ZPERM Permanent strain of the rope at station (due to the anchor

weight)

MC Material code: MC=O for fiber rope, MC=. for wire rope

NN Interval of the line increments for output printing.
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(B) Output

X,Y Hozizontal and vertical axis with the origin at the buoy

in feet.

C.4 Remarks

(1) The stress-strain relationship used in this program is:

Z = 0.171 Exp(- .0819) + ZPERM for the nylon line
rQ

and Z = 0.0115r + ZPERM for the wire rope A

where Z is the stvain

r is the ratio of the force to the dry ultimate strength. The program

should be modified for other stress-strain relationskips,

(2) The convergence rate of the solution depends on the stress-strain

relationship and the initial angle correction function. If the stress-strain

relationship is changed, it is desirable to revise the correction function for

a faster rate of convergence.

(3) The program capacity is limited to 20 line sections and 1000 incre-

ments. The core storage needed for this program is 40 K. The number of line

sections and increments can be enlarged by changing the program aimensions.

(4) For a typical deep sea mooring with 300 line increments, it takes

3 or 4 seconds in CDC 6400 to obtain the results.

(5) Output information is self-explanatory.

C.5 Program Listing

:Ir
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12 1, L AI I IF Q u) 2 1ui)91uu1 IuuI L

13 FORMAT (2-.,14.)

14 FUR;4AT ( 5F6.'.)

15 FUR4A r 2 F8 o o)
READ losi I*ILKg
PRINT 219 NLKqK

21 F URM~AT L K 1'.¾4~ 9*,14)
A<EAD 149 CDbqCLWqCDTqCDV,9VCu
PRINT 249 CD)B*CUbWCD] ,CL)'NJVC

Z4 FuKil'AT (* CDb=*qElu*.J* CVW=*,El0o39* CDT=*qE1l)3s*

I CDN=*qElv*3,* VCukElv~j) 
.

KCAD 13t (LP(I I) WPC 1) ,CL)IP( I) CDTPC 1)s I=19K)

PRINT 23

Pi~<I NT 33,9 ( LP-( I ),WP I) ,CUj4P( 1)qCDTP( I)sIq 1=19N')

33 FORMAT (4Fluo~,I1U
DO i-L,,U viL=1,tLFK
REAL) 129 $)AqDEPTHqL~i

PR'lIN'T 22t &'AqDEPiqLhKI

READ 151 'I~jUFA
PRINT 2ý-' HSUJFA

25 FUda'1AT ( J*F.lc UFA=*,F8*2)
r'EAD 119 (LII) ,DIAC )9I UC( I ) S,uA (f IL9PEf"Ia' 1 9"10C 1 1 I1'N)

PRINT 28%

28 F~kir.AT (~ L) ( VIAC I) H1) U.'

1(9 *,. .pLE¶ivC I) ** vl-( j ) I~e *

t-'.i% 1;T 38. (L ( I ) .Di A( 1 U.-~ 1 I U..l I1 I ,LPEK"-( I ) ,':C( 1)9 .1 I=,

38 F ORs'IAT (C5L14o.392 111,
READ !GNN
DO 45 11' K
1,1AC I ) =L)IA ( 1 )/12.

45 C UA Ii4,'E.

DC) 5v. I1 9K
AIP (1+1)=!IJ zI CU-F IX CL(I /.!.A) +1

5 0 CONTINJE
C CALCULATE. IN'ITIAL ANGjLL

LL=-'
DO 3-,, J1.tK
IF (CJ.(.) GU To 3LDL,
LL=LL+L(JC.+LIw(')

3.' C ON I I VJE

DO 31 - J =1 9K
IF (MC(J).E(.'.;) GO TU 3li.
L-PL + L (J) 1 +LZP Ek.-'(J)

31 L CON T IINUEN
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* .,g.,u-WPI:LL .)L4J "Lj

LL=IALOrG(L/

4,C ONiF KN I1=I.6b38 B- FPj.
IF- (lI:j*.OL*24.) Uo TG 52%j

GO TO 336
126 VW=2-.,j6'Iti!-JT*)*IU957J

336 VC:$= (VCo+,.23*VW) *1 *68889

LF 1).

x, 1 1 2) A1

PHI~ UP=1

Fi6) , t)E1 * 92 4 =

F q:FH/T NPHI C2) 1
F ( 2)=OT (FII*FIJ+FV*FV)

:j1-Y C J 1 +1K

M-2i-iP(J- )-1

R =F ( I ) /UF(J)
Rt3P"( 1 )

IF U-iC,(j).I:Q.00) 6'-' T~ ý 50

Lv=L ( I)*JEi-J
('O 10 955

c. AL2--IAIJELATIuN*HI!' I-'.,\ vIkL kUPE

Z5~ ( j Z~j5i(I 1L13L( I) (LLiiJ)
95,5 ~Ii'IN (PH I )

\-:z:)A C(JI P*+LI I
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cs~~-~
CrUk~ RFL ;

c Ti-
y N=Y y )-5 *M *CU~P
YM-YN/3.?'b-1u.
IF (YM.GE.J.) 6O 10. 513

GO 10 515
513 VC=VC~j/Yi**.4
515 VCi'4=VC*Cuo.p

VCT=VC*$cI-'4P

FCDT=E*B*3. 1416*DýCDT3*VC I AB-'(V\CT)

f(I+1)=F(I)+F(Il)TS*U/ J)C2Ji

PHI ( 1+1 ) =V'il ( I )4-(FC1)'4+..A'U.4i (i,)*3IjmP /FAV I

935 COI-41INUE C

Y (I) -Y (I-I) +LP( CJ) *CU!>P

Y.fA=YN/3*2b-).Uo
IF (YMGE.'.*) 60 TO 613
VC=VCS4
GO TO 615

613 VC=VC,-a/YMk**.4
615 V~C"4VC*CU IP C

vCT=VC*SII-P
FCDiý=CDN4PCJ)*VCtvýAb$)(Vri.s)
FCDI=CDE PC J )* CT*ABS( VCT)
F(I+1)=F(i)+FCDI-'XP(J)*tu'CP
FAV=CFC I )-IF(1-1) )/2.

1'-.'k- CONTINUE
N=N+1

C IN'ITIAL ANGLL CURRECT'u"4

YD=Y CM2 )-DEPTH
YDD=YD/DEPTH

YD)A=ABS( Y0D)
IF (YDA.L[. ERR) GO TO 1-1
IF (N*GL..1v) Go 70 1,,
YEI.*-YDA**L,.25
(DC =Y DA ** ) E
PHI(2)=PHi (2)*( j+SIGNCYDCYDJ))
GO TO 1hO

1'.4 IF (KDo7Qou)~ ISTO)P=;-112
PRINT 2'.' i%,YD:,~COPEqDEp~rl

2., F'.jKrAT (ht-ilq*!Hl.. 1> THE.(LCLI AT ITEt'ATIvs, ',o0BK=m1?

-.53-.



r 'b 1T 3k,, C X( 1) 9 (I) qjT (1) )F(I1) H( ) %L(1) ,PHI( 1),I 12 9 1 ST.Ju)

't, FURAAI H /El 5*49 11

C01 T: 11~dI4ULI

FXAVPLF if" D)A rA INPU TI

44. .*16 ,jo-b 1.:) 'Jj

"-05 3'-' Z o1 .264

45 3.- 2'1 *: .o264

850. 1. 23U. ~ . C

:jI 5 3 k, o
3%'o 1.5 5 3.' ' :v- u oub3 j. 0
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APPENDIX D. Program DYNSIN

D.1 Purpose

To obtain dynamic mooring line tension under sine wave.

D.2 Program Logic

The program starts with a set of assumed equivalent linear damping coeffi-

cients to solve (19) and obtain the response quantities. The corrected

damping coefficients are calculated from (B.25) and (B.27) and then compared

with the assumed values. If the differences are not within the allowable

limit, the new damping coefficients are introduced and the program repeated.

The convergence is ensured because a higher damping will result in a lower

velocity response; and a lower damping, a higher velocity response. The

coefficients converge rapidly.

D.3 Notations

(A) Input

NLK Number of cases

K Number of line sectins

E Material elastic constant (see Table 1.) in psf.

EO Material elastic constant (see Table 1.) in psf.

Q Material visco-elastic constant (see Table 1.) in foot-

pound-second system

L Length of the line section in feet.

DI Diameter of the rope in inches

Z Mooring line strain under steady state tension.

RO Mass of the rope [including the entrained water) Der unit

length in slug/ft.

FM Mass of the package (including the virtual mass) in slug

-s



LP Length of the package in feet

CD HydrodInamic drag of the package acting in the axial

direct ion

MC Material code: MC = 0 for fiber rope; MC 1 for wire

rope

MM Material model code: MM = 1, 2, 3, 4 (see Table 1.)

HS Significant wave height in feet

XINCN The length of the nylon line in which the variation of the

velocity amplitude can be approximated by linear rule.

XINCS Same as above for wire rope

CDT Tangential hydrodynamic drag coefficient on the rope

surface

UAP Assumed linearization factor of the water drag on the

package

DCR Assumed linerization factor of the water drag on the

rope surface

(B) Output

UA Displacement amplitude in feet

SIGMA Mooring line force amplitude in pounds

LT Total length of the mooring line from the buoy in feet

I Index

D.4 Remarks

(1) The number of line sections is limited to 10. It can be enlarged

by changing the program dimensions. The program requires a core capacity

of 60 K.

(2) The program handles four types of material models as listed in

Table 1.
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"(3) Virtual packages may be inserted in the mooring line.

(4) It takes a few seconds to obtain the results of a 3-section moor-

ing line with a water depth of 10,000 feet (compilation time

excluded).

D.5 Program Listing

57
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I)I''i" AE(I,9'311;)bC( 180) 9,L( 1I uL) (1'0) 94&'( 10) ,L(j 1() U)"9L( 10)' , L f ( 6

10)qA ý M U)9( u)9jIG-A u)9! ,L(1u) ,L'( 10 ) 9-(10) 9CD( 10),ALI'( 10

lAu( 1,,) ,CD"( 1J) oCr)"f( 1, ) ,UAPC( 1v 9JP) 1L0) 9DCI%( IU) 'DCI<C( 10) 9DC'".)( IU)
19MI'M( 1L,) 5,F>J C u) f1'C C lu)
,<EAL LLiLDqLII1CkqLHLo

1- FUiRMA7 (14)
DO b'juU JIL= 1 9NLK
READ 10, K
KD=K-I KDV=K-2
NR B=4* K-2
NCB=NRB
READ 129 C1.CI) FI1 'CI LI)DI(lC1,((Ir'(I L(IC )'

12 FURM4AT C3Fl-joov'7F6*v,2I4)
PRINT 32

3? Fulý'(IAT( mil ,3X,*EC I) "7X,'E0( I )"6X,9* I )*,7X,*DI (I )* 6XWL( I)'97X9

MC(I)*,* j*I)9III

22 FURv.A1 C(it, 9lvE11.4'*I'))
DU 18u J =1 9K

180 CONTINUE
kEAL) 16, H-S9TsXIf-*CN9XIfNCý>CDT

16 FORMAAT (5F6.u)
PRINT 299 t-I$,T9XINCN94XI.NCbCij 7

29 FQV,'<"AT (C* H6=-,F491* T=*tF4.,l* XIssC1-*,F5.0,)* xi
lNCS=*,F5e-. CD r=*,F5.3)
W =6o*2832/ T

18 FORM1AT (1-'F8*-)
READ 179 (DCRCI)' 1=19K)

17 FORs-1AT ( 1F6*o)
READ 109 NN
INI T="

4uiC'o IF CNIT.GL*6) GO T3 40lu
NIT=NIT+l
DO 10t, j=19NRB
DO 15v J=19NCB

15V ACItJ)='.'
iGo CONTINUE

DO 2,; J=19K
IF (;-1MCJ).EO.1) GO TL; 111
IF (MM~(J)*LU*3) GU Tý) 113
IF CMM(J)oEja.4) GO0 TO 114
CO TO 115

111 OCJ)=Q(J)*W
Go TO 115

113 UEO=UCJ)/EjiCJ)



E C J )= ( J)+Eu ( J ) *.jb~w**2/uw,.

GO TO 115

*114 FQ=EJCJ)41*2+4JJ)**2
E(CJ) =E(J)+Eu(J) /EOS

ý'C J)cE.' CJ)**2*U( J) /Eu~
111, AR = 7854*!)ICJ)*L)ICJ)

AiR=*7854*DIiJ)*D1(J)
AE'UJ)=Ak~ *L(J)

Aw (J ) AR*'I J)

WOjP C J) ='4/JP C J
~~PS~ ~jP

Lý,CJi) =LCJ)*(l*+L(J))
-ý-E(J)=G(J)/ECJ)
OEb)=UECJ) X*2
CDP (J) =.848*Ct) CJ )*UAP-(CJ)`

CD,< (J )=2 *b667*D I C J) *w*DCI, (J ~Co T/AECJ)

GA =d $PS -0E W
GAS=GA*GA
GB=CDR CJ )*W.+UE (J) *wS~.)

GB = G B*GB
GC=ýQRT (GAS+G135)
GD=2 6* C.-OUE$ý)
ALP(J)=5tJKC(1(GA+uC)IGL))

BET CJ)=-b~AkTC C-GA+GC)/GD)
ALPL=ALP( J)*LS(J)
BETL=BET CJ)*L! )(J
3INH=(EXP(BETL)-EXP(-BETL))/2*
CUSH=CEXPCC.ETL)+EXP(-BETL))/2e

-jC CJ) =51NC ALPL )*COS'-H
C-)CJ)=C(O$.(ALPL)*z)INH
CC CJ )=CUS(CALPL) *CJSd
AEACJ)=AE(.,)*ALPCJ)
AEB(J)=AE(J)*BET CJ)
kA C J) =AU (J)*AP(pCJ)
AOBCJ)=ACCJ)BFT CJ)

2(J0 CONTINUE
DO 3-;' 11'i(
J=4NI-3 $ JJ=.i-l
ACJJ):..)CCI) ACJJsJJ)=.jC(I)

3ij-j CONTINUE
DO0 4ý,%. I=19K
J=4*1-2 $ JJ=J-1

ACJtJJ)=C,*.CI) 4. ACJJtJ)-C3)(I)
4ý)(j CONTINUE

IF (KD*LE.'J) GO TO 1'.,30
DO 50v~ I=19KD
J=4*I-3 b J=2
ACJJJ)=CC(I) 40 ACJ+1*JJ+1)CC(I)

5tiA CONTINUE
DO 6(;- I=19K1)
JJ=4*1 J=JJ-3

A(JJJ)Sb-C I) 4,ACJ+1,JJ-1)=-,>,)C



*6:), CONTINUE

J=49141 41 JJ=J-2 p

ACJJJ)=-1. L (J1J+1=1
CONT INUE
DO) 8-.Au I= fJJ

AC J J-2)=-Ubi(H I-,ALA( (I

A( J,J )'. ) 3 i
ACJgJ+1)=-CDP( 1 j
ACJgJ+2)=(AEA( j+l)-A-B( 1+1) CC( I~j)+CAUCB(1+1)+MAACI+1) "CS(I+l)

ACJ+1,J-?)=-ACJJ-Ii
ACj+l'J-1)=A(J'j-2)
A (J+l1,9j )=A(J1,J+l)

* .. ~AC J+ h J+ ) =A CJsJ)

A AJ+ 1 ,J+ 3) CAL I U) +hA-A( U))ii-) (Aý.b ( V) -AEA ( V) )*CC( iu)
fi* CO.NT I MJF

!X)49--- =10=141

JtK=J-j

A J +3 (iAL-.; J'I +A-A( I- 1,j ~+ (A b I -vALAC IV) )*,'ýC 1,j)

A j 9.J+3;=(-ACA ( I -+A-H( I &CiPAEbj 1ui)+A~.A I v) *SC (I .'j)
A J 9J+4):(-A[ A( IJ) +A-4?.( I'-Q) )-$.C U) +CALB IU) +A.iAC hIv) )*C's( 1,J)

9CON.ThT INL)E

6( l)=H~j/2*
N =NR b

JjLIFZ=NCb
ýA L L JiWv(Aq i%,)'IL u[".~.JLJiL

* ý.4=4*FZ . K3-r\N4-I
h(K4)=u* 6(K3)=*.

C PRIN~T 51t' (bs(1),1=19K4)

N1

00 lluu 1=19K

Jt\'4* IJJ'-

C I ~(J I -(c I ) +li Jts) Acc )+L iCd) *C3 i J1 iJp( I)
C 2 t CJJ KC I t K))5()s '11 C I ) +o J.)b I ) I C I
4 - IA N =_).R C IC I+C 2*C 2
A.=A ( 1) 1

4ACC -A . AC I) NCC I)
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A:.C=ALA( I )AC( I)

M.AC>AEA( I) *C (I)
t 5CC A E.I3( I ) bc 1 A)

C 3=L(J I )(ACC*Ci,.'j )+iL(JK) '(iCj()A,)C +b(ill)'* (13bC-Aý)z.)i3 (iJ) (t3oC+ACu)
C5=C~4-OE( I)*C3
C 6 =C 3+ UE ( C 4* 5
I GI,'A ( N) =,,U kT (C 5C*5 + C6 C 6

I F ( i-CC( I )L U 91 GO 10 1210
XINC=XINCri
G,) TO 122-~

121v- X IiNC X IN C*C.oC

IF (L(I).LEoXINC W, Tv 1I~v
JJ-.I F IX (L (I /I NC)
DO 115C J=19JL

LT C N)=LT ('i-1)+X I NCS
X=L.,(I)-XINCS*FLJAT(J)
AL13X=ALP(I)*X
t3ETX=BET Cfl X
EXB=EXP( t3LTX) EXbI1EXP(-t3ETX)
ANHX=C( EXi,-EXBN)/2.

CJ3HX=(EXU+EXi3N)/2.
:jýX=3IN( AL1JX)*5INHX
.,CX =SIN ( ALPX )*CLSHX
C$)X=CUSCALPX)*SINHX
CCX=CUS (A LP-X IC OSHXAS
Cl=,.CJl)*-jCX +t3(Jtj*CCA +D(Jm)*LC)X -B(JJ)*'.)OA

C2=b(jJ)*CCX +BCJK)*bbX +t3C(JH) *z:CX -tb(JI)*Cz)A

UA (N) =SUR I (C1*Cl+C2*C2)
ASS=ALP( I )SSX
ACC=ALP CI ) *CC

A5C=ALP( I)*SCX
ACS-ALP I )*c$x
Bb.S=3ETI I )*SSX
03&CL3ET ( I) *3CX
b3CC~3ET( I )CCX
i3C-'bLT (I *c3x
C3=UCJI )*CACC+B3$$)+6(J6K) wCi3C-AbC)+d(JH)*bCC-A$S)8C().)*(B.JC-rC,,)
C4L0dJI )*CASSi3CC)+Li(Jlý)xCýC+AC3)+BCJH)(CI3SS+ACC)+BC~Jj)k(t3CS-A5C)(
C5=C4-GE( I)*C3
C6=C3+QE I )*C4
,ýIG.,-A C N) =SLRT (C5*C5+C6*Cb) *AEC I)
uD= CUA~i'j)UA(N-1 ) I IACN-1)
JDaUD*UD

JA.:)UA (4-1 ) *JA04-1)
U2X=U2X+JAS*XINC~j*C 1+IJD+UD:.,/3*)
U3X=U3X+UAS*UA~i-)'ýXi.ICS*(le+1e5'cUD+UDýS+UDS*U0)/4e)

115:; CONTINUE

12 "A, N=N+1
* ~NJ D=N- J D-1

L I N) =LS CI +L T CNJD)
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UA P,, (I)= ( jA P I -.:APC ( I) )/JAP I)
C3=b(JI )XALP( I)+u(JIi)*3LT( I)
C4=-I3(J I )"BE.T ( I )+B ( JI-)*ALI'( I)
C5=C.4-QE( I )*C3
C6=C3+QE( I )N4

juj U D *UD
JA'=,;A(M-1 ) *UA 011 )
J2X=U2X+JA$*7ýLl;dC4 (1.+UJD+iL,.)/.J.A-,

~+1
Lr(N)=LT(Ih-1J+LP(I)
DCr(.C(fl=u3X/U2X

DC k~ I )zuC KC ( I )-DCI<(I) )/uCm~C )
1 C C'ONT 1~~j N

C Hi<INT 269 (LCC"C I) DC<C( 9 D LCr. 1), 1= f,'S)
26 Fof~v1AT (9L-13.5)

WX) 3.I.)5>~k I1K

3,,-5' CUONTiNUE-

JAP( I)=(UM,,0( I)+LAPC(I)l)/2.
~Ak`.( I )=(JAP( I ilL APC( 1)-i

3'j3 u CON T INUE
C
c ALLLI-AALJL. Ei~iýUi< F4u'< [)Ct 1L 1- I'L,-CLNT
C

k DO j~bu I =1,s
I F (CA BL ; (U.rS31))6 T ~1) 6p Tu 4 a

34,8t CUN T INUE
C
c ALLU.-.A6LL EkkO.- FtU'ý UAf' IS e- HEiCLiJ.
C

DO 3ý9v I=tKD
I F (Abý (j'.P i ~) )*jL.ý,. ) (A.j 1'i 4..').h)

3 L 9 CUNT I NIJ

<I\ 114T 8io, WCUA I)q I =1 9 K.)

8~ F.-J1Ai (lit ,l////5X9/bC', IIJ x 9,4X. x LD u..T( 2J~ PjAitýi 94 ,dC- 3)9X~LC

9A~ 14X DC L ( 5 1 4X 9 -DC )\( X9D, `D1 (8 94 'C,(9 4X9AI
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? - I; I V(,

c 4, iJU A =,.,

41) U 1-5 J=, 9N

I , I F (IPIVUI(N)-J) 8U~ltuj.7ip.,",j IF (A6'3ý(AVIAX) -All.,(A ( .Jg,I)) 9 JIvu, '..

1-..5 J IA IETIUE

I ' IL,',CHAI'I.J lui. rul PW~v'r L'v'iv~ u Dsl)ALJv'ALc
13`1 H I*-'Ji-CoLUIf., 14vo 2&v., '.

16.- A A
172 A IC IULUr)AC I' L AtL

22 A :At'=.3 (I. 'J.. L)
2 3' ~( U~,L =dlc 1 (.LLY;

DI )V IDE P I JUT~ BY 11 1Vtj i ;iLL-.iL.

355 1iFL 3 8 '3b ,3 6.
36,, 00J 7 - L i, -
3?7.- :3 ICvLj.-i 9)=R, I CvLU.I, L) P't-'IVv f I
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'., i~u 5'. L •I 1,14t
's, 11 IL J- I ( L.UL oi ., 9 14 j•

4 'i I kI L C i 1 C oL U .M ) 4 , ,. J 4 .~
4 A (L 1 9 1 C JL,.•M) v'.

4"4(, 1) 45. L=I sN
I 5": A Li , L -A L I 9 L.) -A ( IL.J i I- L 1
4 11 (.v,L5<C '•HA '•5, L46,,

55,j c.u,, IN 11 tC :

C
C I NI L kCH AhlL CULUv.ii5
C

6,j DO 71- I=iN

61u L=N+I-i
62-., IF (!NDEX tLII-I1 ,,DE X L 92) toL, I I .u

63,,' JRU,%=INI ,EAtL,1)
64,j JCULUM= I NUEX (L, 2
65,, DU 7.,5 K.:I,N
66v :-,.AP=A ( , JlNLr, )
6 7',, A 9 , Ji<R W )'=A K i JCLU';-I)

7 A- AUJCL, LJ.C.)=3LAP
1.b CONTINUE
71 j CUNII NUE
74-..: R L!URN

L Nv

SEA A. PLE F DAIA iNP I

3
.•v 4 Lu ,,., v 4 -o J, il 4o 0,•,. 0 ,: . • . • * '' oz'"0 •

0;24(,cC. .0 4,,,.COjG. .G 0 4. ,...'0• -

Iu. 5.2 1 ,. 1 .,,13
4o98 ,33

4 o') . 4.61 .25
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APPENDIX E. Program DYNRAN

1-11 Purpose

To obtain the dynamic mooring mooring line tension under random waves.

E. 2 Program Logic

Same as DYNSIN except the corrected damping coefficients are calculated

from (24) and (25).

L.3 Notations

(A) Input

Same as in Appendix D, plus

F Frequency, in cycles/sec.

KW Number of frequencies considered

NSPEC Wave spectrum code:

NSPEC 1 for Pierson and Moskowitz's spectrunm

NSPEC -"2 for Scott's spectrum

(B) Output

'UA Displacement amplitude under unit Sine wave excitation

USPEC (UA)2-Sh(f)hAf; Shh(f) is the buoy motion spectrumAl

EBSILO Strain amplitude under unit Sine wave excitation

ESPEC (EBSILO) 2 S (f) Af
hh

SIGMA Force amplitude under unit Sine wave excitation 3!

TSPEC (SIGMA) 2 Shh (f) Af

LT Mooring line position from the buoy

UVAfl Variance of the displacement a2; in (lbs.) 2

U

EVAR Variance of the strain a 2

TVAR Variance of the dynamic force a 2; in (lbs.)2
at

TM2 Stt(w)d; St(w) is the force spectrum
0
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TM4 fo0g S4t(s)d ,

TEB The band width indicator

I Position index

JL
VSAR oa2 dX; V is the velocity

VTAR aV3 dX.
0

DCRC Corrected linearization factor of the mooring rope

UAPC Corrected linearization factor of the package.

DCRD DCRD = DCRC/DCR - 1

UAPD UAPD = UAPC/UAP - 1
K

DCRS DCRS = [ (DCRD) 2

1

K
UAPS UAPS = • (UAPD) 2

E.4 Remarks

(1), (2), (3), and (4) same as in Appendix D.

(5) If the linearization factors do not converge to the acceptable

values in six iterations, the operation passes to another case.

(6j The frequency may be arbitrarily spaced.

E.5 Program Listing
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S(Ji<,.,,j;\pj.. u 1, ,A,, ( , .'u [ ,r .d Trk-jtu , I ,PL 5= .h.iI"U1 , I A r..6=.J ITPUT
D~) ,IJA( ) ,'q',A( 18,.38 ) L( ,1)0 ) ,DI( A v) ,rwL (10) ,Ls( 10;) ,vi( lu) , 0 ALb(l 10 -

)) 191 ,• (1, >r5 ( IV ) c, (- I, ) CC ( Itl $ ,( IV ) , SP(Iu 9Z ( I0} F(2(.jl L[(6 "=
6. 0")'l° ")''(- (I U) I Ri 4'v )9,)1 CI'A ( 60 9L_ýC ( 9Lt , ( L .()lOI . Jl ) CD(II'f 9ALt•[IO

1) ,prT I_ -9-u,' 1') sur( 1) '9ArAM (I 'AF, 3( Iu),A-A(IU,) SAWB( 1D) -CAV ( 1')I
tA,( i s r'r)" ( 1u ,,)i9 ( 1 v ) , ;APC ( -,, DC"(1'0U) tEu% IL) U I'll- iU ll v "9'".S1E C 1 , ,VV'%" ( 6*-, ) 9--A3 ( 2-1 ) ,0AF L) ( u} C"'C ( l , ) 'DC",[;( I0 ) 'VýAl\ ( 101 V IA,\( I

in o' E I1j) '"I ( lu ) s [:'f(7 (". 6v ,6..) Eliz I Lv (60 ) ,flý$PEC (6U) ,'JVA'(k30SIEV"'' 6 ,) ,T VA- (0' j 6 ) 91 12 '(6 ) 9 f -4 6v 'TEb 60)

1 L LAL L,LI ,I ), L I,-C<KLI ,L!
I I ] I F3R:"ATI ( 1-4 2 4,vI IL

; i• P 'AD ] ",NLK ,,.

1 -. FOR!-AT (214)

,, AID 12,( ( 1 1r - l,j I) {ld( ',L 11) 1)• l~ , IU (1) 9 "vv- ) Le'(I) CL) (I•' '

I C I ) ) II= I tI , )
i? FUP;,'.AT i 3 F I ; , IF6. v I4)

P N 1f. 32
'? F-'."',ATiI ,3X,*E( 1 ) ,7X,•EO( I )T,6X, I (X )X,7X XI t)7,6X, ZX I ' ,7X9

I Iu T 2 26 , r E C',7X I " I I' (6 ,• V I t Z6 v L D I L ,3 ,* C[ i )•, 1-,
1 C I ):,. I (

2" F6I *, ;-P4 F P I 1 =4,15)
DJ lPJ J= ,K

1I ('} 1D I v /(..I< ( , +L C J) )/12.
q!•. COr) IT':')'

".,= '•: - 1. 1 KDD: r- 2

Zi• I=-' 4 r- K-2

.,EAD 4, F ,'.
51 FORtAM (1,4 ,,)

,READ i4'F169= ,".;14 FOP.4AT (4?-'F4.-1)

t rADT CC4X6,.,' ,4E26 F'i. )'iA T ( r ~ , 4
.',<l.izT 26, lIS,xlI.eCfi,Xi.4(z, '(,.A) E

1 CUIT= F6.3,• NSPEC- I2)
"<EA,., 18, (UAP(I III1 ,K')

Ig FO;(,*-*A1 I 1-F .F )
REAL" 179 (r;Ck(I} I =I,,1.9

1 7 FO)R:-AT ( ]-vF6. )

PR I N27,.'T
27 FOR,*AT ( - 'CR(I) r'<u,: I TO 14)

PkV1NT 7 D(
;V 'R I"%T 2 "I-D

29 F;, u<',, T • uAr'(1 F,,,I I • lo 14)

Pr•I I 17-o {uAt-' I I= I,"N,ý)
17 FO..•-,A T ( i.-, ]2,,1 )

)) A'Y( I 1=- -

Iv, ( I) '-
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193 CON'JI INUE
1F (NSPEC.E(j.2) GO TO 94
I F (W ".'F.24.) HS= .2 7*(Hiý)+5,. 8) *2

914 ')FC=. 4

DO 128 1i'\ 1 9KWW
i)FA=F(IK)+F(IK+l,
D7Fi)DF Ale: o -FC.
D F C=DF C +j)F
W=F( IK)*6.2832

D W= I)F *6,*283?
IF (NSPEC.FG.?) GO To 126

U)ATCIK=(,00I3dtF(I)*)EP-vl2H-'*/(N-

GO TO* 128I126 --' =1*/(:,o-3*H$>+I*35)

I Fk WL F. GO TO 127

U AT t, o2 14 H *H S E XP ('E)
JA'( IK)=UA1 3qTW
GO if) 128

NIT=ý
NIKK=')

2,).., DO 93 1=196u
VVAR( I)=,

93 CONIUu
PO 2 0 1 =I t 0. e,
:J=F(IKj*6-2832

DO I.' 1=I pNRR
DO P]- J=19NCP

1 3" A ( 1 ,J)=

Du 2-.,, J=19K
I F ( 11MA( J E,.' GU Tu 1
IF (!-:4'J.F*.,.3) GU T(, 113
IF f MJ).F 0', 4 GO T0 114
Go Tn jj15
Q1 Q( -) G( J)*.

30 TO 115
113 JEU= (J) /11,ji j

L J) =E J )E (J)/~

Go To 115
114 E:S=E'- J) (.4*?

fl ( J) =F( J ) +E(, I J)/Eiz

I115 AR=*78i5410ij (J)*tI()
AE(J =AR *E(J)



AUC J) =AR9aC J)

ýF C J) I: ( J F (j /J) (

C")P (J) =j. 9 *CL)( J) 'tAP(CJ)
CDR( J ) =. 284*D I( J )*LCIkJ)*C 1 AL(J)
UE =v.E ( J ) -*(jCI< ( J )~,
Gf ýS P S-,QE d
GAS= C.A*GA
Gf3=CDR ( i A+W ( J 45Pi-.:,

G63= G 14*G.

Gc~=.,.uR r ( G"-j+Gt5ý,
G-D=2o*( I *+UES)
ALPCJ ) =c,UTC(GA+(:C )/ULO)

BF I J ) -I AR'. (-GA+6C)/(D))
ALP L =AL P(CJ) L:S(CJ)

Lt:iEf LrT(J Lý, (J)

( 1=EXPC[FTTL ) FXPC-jE TL ) )/2.
CJ = I N( ALPL 3 I Nil
(J)='Ir'(CALPL)-4Cuý)H

C:)(J)=CU)CiALPL)'1iJI(%d

AFA ( J ) =AF ( J ) *ALP) C J)
AEPCJ)=AECj)*n;71CJ)
AQA CJ )=A'2 ( J ) *PIP CJ)

COJT I NUE7 4

J1=41ý -3 11 jJ=j+I
A(Jj)=j)C(I 1) AC.,J,JJj)=.C(I)

3 C ON 1 1 NUE
DO~ 4 ' lK

J=/01-2JJ=J-I

4' C CO[T I T: E
IF 'c'.L.~ CU 10 1 ;3,

D.,- I-,K
J=4NI-3 . JJ:J+Z' 

t

AC J, JJ)=CC CI) ACJ+1,J-J+I =C( CI)

5 COIT INUF
DO, 6 - I =1 9K %
JJ=4r.I - J=JJ-3

6; C oNT I N UU
D00 7; 1=19<D
J=4* 1+1 JJ:J-2

7 C C! I I NU F

DO A--1= T

A J 'J-2 ) I -A-""' 1i
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A(JtJ-1)= A~ii( I)4-AI.A( I)
AC JJ =*'(14 o
AC J J1 f) =-CDPC () 'W
AC JJ+2 =AF AC( 1+1 -A~iC (If I) ) I( li-I ) I(Ai 15 ( 1 1 ) +AaAC (1I+ 1) ) *SS( 1+I)

A(J+1,J-2)=-A(JqJ-1)

ACJ+1,J+1)=ACJ9J2)

A( J+1,gj+3) =A'( 1U) 4A,,A( it.)*ý)!( I %;CAjLzIu)-AE A( IV))*CC( IU)
11'C CONT I Nl'.f

IF CKDDoL1.o0) GO TO 103%J

DO* 'f') =It'.,=1+1

JK=J-1

A(JNJ+4)=(ACýC Iu)+AuACJ,.))*ýC~iu)CA~jb(IUP-AEAC1v))*C")CIIs)
A(JJ+3)=(-AlACIO)+Aj-(1J))*C.)(iL )-CALd(Il)+AA(I ~lu)))*Z)CIlI)
AC(JJ+4)Z.C-AEACIlu)+A.df8( It'))C,(10)+(AEi3ChJ)+A.iACIlu))*Cb(1lI)

CONTINUE
1,,3,, C ONT INUE

Do lt'5j5 I=1'-NN
6 ( I1=.A

iz-5v CONTINUE

I 4LF*=38

CALL IN~Vi<CA, '49t,19 al)DEfLl'iqI,1,ILC.,J3ILE)
K4=4*K z) K3=K4-1
-5 3(K~4 ) G 6 r(K3)~,

r RI 1NIT 5 , B(C(I I =1, -)4)
5P ORIM'AT C1?Elo.?)

=1, ll;; = 9

KI 1()=t4

JI=Jr<-2 ~' JH=JK-3
(1aJ I)C1 +1 (JK ) iC( I) +J(jH) *CSC(I ) -3C(JJ *5Z3( I

C ? !JJ) CC( I )+.B( JK PA$ I ) +:3C(Jri)*SC ( I ) BC(J I )*CS ( I t

.)A ( ) = S:RT (CIC C1 + C 2*C2)

VV /AIUM) = VVAK (N~)+ .I,Pf:.C (N)
IF (.NrK.E,,dol*) GI, 1u 18)0

OJVAi< (N ) =')VAr (1C4~) +lGJ$PEC (Ni)
Aj, =A F A I) *,'IS I)
tArCCAf. A( I )*r.C I)

; CA ['R I :).j( I)
:1-C AEA( I) *:()C I)
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HC =A Eli I )*C:, I)
(:4 11 C4 (J I)* (A'jI WC )+ii( Jr% (13 J ' C ')B J I) o 4 C +i J)I(i( )A

r5=,(I4-E( I )x(3

Cf6C '34OF( (I) M C4

EVA 1 (14I) =LV AIR ( N) +E. jPCC (iiJ)
~I Gi-A( N =A-iRI(C5*C5+C6*C6)
T~;PFCCN4)=.I,IG-iA(ei)**2"UAS( IN)
I VA<(N')=TVARN(k) +TSPFC(N(%)
I A? (N) =T '.2 (N) +T $PEC (N) *W-S

C 'P''I'N 1319ALfrI( I) ,13E1C I 9XqC3qC'49Ct~,CbA[: I)9E I'~ 1) ,IG"'iA(-1) 9-s,
18C~ IF (fAC(I).rfU.1) GO TO kIZI

X~G Iu NC = sd

GO TO 122-~

DO 115v. J=1iJ9
N = N+ 1
LI T (N) =L TC Ov-1I) +X I NCS
X=L...( I )-XINCSAFLuAl (J)
ALP-X=ALPCI)AX

BETX=53FTC Ix
EXR=FXPMFLTX' EX'3,N~FXP-tETX
ýjINHX=CE5X-j-F'XFN)/2.
C0O!HX= (EXo+EX:3N) / 2
)3sX=3I N ALPX)*5kI!'HX
ýýCX=SINCq ALFX)*Cv..i$rjX
C'jX=Cvu)( ALJX) ~I.'iX
CCX =COS (ALPX ) CW>lHX
C 1 =i,(I)C f*,Kx +FI(JrKj*CCA +t3j HP -C!.A -S IJJ )*A
C?='1(JJ,*ý-CX +13C(JK ) ;C5SX 4.bCal-)*SCX -b(J I ) CX

VJ)PEC (IN) =--*UA (14) f*2*UA-, I)
V'VAI< C11) =VJAI< C ia) +Vr$PEC C I-)
IF (;qK.CZ.i'U) (~jj To 115'-w
'J$ýPEC (N) =ýA C 1) **2*jA$ (I A)

U'JAR (,N) =)VAN (C-) +u5PEC CiN)

ACC=ALP( I )CCX
A$'C=ALP I )*SCX
ACb=ALP( 1 ) QCO$X

B~LET ( I) 1: 5z)
'3 ,C=BET ( I ) 'C X
-ACC=bET ( I )*CC X

C 3=o ( J ) * ( AC+PS') ) +j3 (J-%) ~(~5 C+b UJj1)' ( BCC-A:>5) -B3JJ) * ( 8,C+AC.A)

C 5=C 4-QF( r
C6=C3+(QFJ(I,*C44
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aI WE CC (N) =LWL'I Lu~ (j)*2-U1%o 1 r,)
U V~kC N )VAI< C) ILf$Pl'( ( N

'1 GA A(CN) z',URI(CC'4C5+C0*C'.,)iýACI)

rVAIMN~J) =TVAIK(C10+1 SP1'( W ~
=T1 C' ,) r:12 (1-4) 4- .')fEC C1'%)

1 ~'14 N ) = T'14 C :4) +T,'HEC C'
PI<INI 1.31,AL.'C I ) 9BtIr CI qXjC),pC4,C,9CbqALC I) ,wEC 1 ~I6'()

12 N=N l

K F ( I
NJ 0 = N- JD I)

UA () =ýZlRIC C JK ) K~B C J\), JJ ) CJJ)

VVAS'~ (N VAN(1) +V5I-'C Ci
IF (v4KK.F--.u.) (.iL BT 181'-'

U VAIEC ( %) =:-;AR ( H) +U4k2r-oEC C I)

C3=F3CJI )*ALPC I)+i3CJH)*5Ei ( )
C4=-RC(JI ) gLETC y)+ijC.JH)*ALPC I
C 7=(:4-QF CI) *C3
C 6=C3+C.EC 1 ) *C4
E,ý3I Lo.-N =!(UR ICC3*C3+C4*C4)
E. YfC C ( N ) =LtiSI L (1.,Ci ) * *2*J,13 I N

NVkC ~) =FVARC ( -J) +'-S"PF.C C04)
'I GM (CN) =)kT (CC*C 5+C6*C ) *Al I)
VýPFCl-( -N) =,)I 614A C -- )k 2*UAS ( I f)
T VAR C N'') = TV R~ (10 + I SPEC Cv )
I.-'~?' CIN) To"' C N) +T~l'2FC'q C ,1 all
1,44 CIN) T,41,C N) +T LPEC C 1) 4oj ;

PC I j. T 1.A 1 ALP(C UE ),T (CI) 9 X 9C j 9(..49 r) Cb9ALC 1 -~EC l: 1 9Z)I(6-A() 9
161' N= N+ I

L T(IN ) =L T I. ) 4LPCI

I F ( ijK .F.) d 2 tIC T 182v.
4-111 NH=M-1

PRI1N r 6-9 FCI K)
FM-~.P. C T i o///// II~I I -IL l<E,.'U IS 'I I H DAi-PIj'C, Al F',E-

r'i% 1-1 7(,p CJA ( 1U''C 9 1 Co.; I.' 1 9 EZ,'-LCC 1 9-):UI,*A 1) 9TbPECC 1 9 L C

7, F7ORiRAT 7 IF 15 4 ) I'I'v

1P?? KEI =KFC
1,ýI- N 11 3 5 t CA (J ) 9VotPECCj, v A-%JLC) J T'E

]35 FOR,;.AT (4Ei4.4)

r PH I N! 13?' CVVA.<C J) s L C-)) J=1,I L
132 F ORiA T C214 4

P C -~N 11 33' CKI J) ,v.E(J) J=l 9N)
133 FOP-*-AT C?1it.)

IF (C1KK.Es-.)') GO( TO 188 -

1,i,.4 T VA R ( I T* 4C( I)
TIM ~.2?T ,?C I) T;'2C i)
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A

ONI I N I *'I~ F ~*, )/1P~

2' 14 BJ 1 5X1 I '

P" I %1 i ,VA,\ 9 Ft V AKx( 1 (1)VA, 1 1,,2 1J , 1 v14 ( f L13 1, 1 1 t I u

ITAR() U

JJPr EI V~CJ

.Ar(I )jpCrI )/,AP( 11-1.
.,IAP) (K)

N.i T L T CJ+ 1-1 T(J)
V A,A( = V,,AI<K +VVA,'CJ );')L T
V fIA.-( I=V iA" I\ +V VAvxIJ) A.)UL.i

rl I-'II4T 136 , V/Ab.( J) 9 V:,AK( 9 V) ,\I:" I L)L I

1 36 FoR:iAT 1 4 F I1..4 )

AI U ) +' I JAR PI DVj 1 (2

0C R DCR:fUCfRF)C P) 1 :

2 j*'I.U

.I' T 5) ='J ' ýA, 1 ':) 9J*t) 0CMC) V C1

IF AP ()~ I .E.< ~ 1 9 1

6' I (~JT.(-6) G T,; 6uKv

RR 5Ki,(.,

GO) TO 2 .,1

6. C ON' T IN UE
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UND.

1)I1.M 'lr '~CI Of, 11) 1V JI ',)j ,A I:I ZI. '~j I/L ,~3 b 1SIZ E 91- 9 1JDEX( 100 2)
1 lP Ivor ( it, t

EkmL I VAL[NJCr (I"'' J~;),CI ~jC'LUI'8 ,As'lAX ,T 9,)AP)

1', DETEr:=.
1 5 DO ? .; J l1f N

2-, IPIVOT(J)=,u
3(, DO 55,. 1=19,N

C
c S)EARCH F~k PIVOT EL 7.'IE;41

4j A'/AX=.'.,
45 DO lu5 J1,i 9N
5-; 1IF (IPIVU(J)-1) 6L,>5 6,
6;' DO lu- K=l ,N
7i 1IF C PIlVOT(K)-I 8 i) 1 &7 4
A 3I1F (ARS( A'AX -Ar-' .'A(J s.)) 65,1Ivj,1Ov.
85 1 R 'j

95 A /AX=A (J,\
1~- CON TI NJE

C
*C INFERCHAW4) "Oj~i.S TU) Il.T PI -,u E~LE.-.I-I'T UN UIAD0JIAL

1 3t: 1F ( I RO.'-I COLUIr.) 14,j,9 26%),P, 14ý,
14u DET ERM:=-DET ER;4
151) DO 2.'- L=19N
16VL.VA i= A (I <u;.L)

2hA( ICULUMAL)=SWAP
'~IF(*-) ?6'26',9 210

2? 1 . APO P 25 L=U .1 .

26:, IEDý X (191) =IRU:
27C 0 IDX (1 92 1 C~jLUi,l

?CPF T FR ~D FT C iMI* P I V T (I)
C
C DIVIDE PIVUT m~z BY HIVul FL!LI'.E,ý%
C

330 AC(I r uL UA 9 1C uL U)=
3 4:. DO 35i- L=19,%

3355 IFCM)38",i,38vC,36G

336') DO 37.,j L=19M
370 B(ICULu:AL)=BcICUJLUi4IL)/PIVUTCI)

C
C REDUCE NU.N-PJVOT KU.1S

C
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4W., 1 -A ( L 13 1 ' GLUM) .) .'

420J A(LlIC0LVf4)i.,.J
430 DO 45'- Lnl#N

450 (Ljq )=A( j9L)A(IC L~iv9-4,

455 IF(M)5509550,46U1460 DO 500 L=19M
500 B(LlL)=B(L1,L.-B(ICULU~ivL)*T
550 CONTINUE

C INTERCHANG COLUMNS

600 DO 710 1=19N
610 L=N+1-I
620 IF(INDEX(L,1)-INDEX(L,2))630,71luj63O
63Q JR04'=INDEX(Lg1) -

64U JCOLUiv=INDEX(L92)
650 DO 7U5 K=19N
660 SWAP=A(KJROW)
670 A(KJROA')=ACK9JCULUM)
7(., A(,(,JCOLUi4)SwAP

740 RETURN
END

EXAMPLE UF DMIA IN'PUT
1 3

720GOO0uo 0. 4.~jou~uu 30. 1.5 .142 2. 4. 4* .27
720000(A). 0. 4J .,LL-u0 ob). I o:> .14Z Z. 4a 4o5 z7 0
72000000. 0. 4vu00t)C. 2lc0. 1.5 .142 21

18
,ul ,-,3 ou5 o.j7 *u9 .11 .13 *1 1 .i .1 .2 zj .4: .41 .29~ .*jl .

70o 1lju~. 100".o 0.0065 1
34.91 995
34.95 26.54 j)ou6
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